- A group of researchers from China has analyzed the performance of ice storage modes in a PV-driven refrigerated warehouse and has found that this combination may offer significant advantages.
Ice storage involves the production of ice in isolated containers for later use, for example, during times of decreased solar irradiation. In the research, the academics considered both series-matching (SM) ice storage and parallel-matching (PM) ice storage.
In SM ice storage, the storage tank is connected in series to an air cooler. โIn this form, the system simultaneously enables the supply of cooling through the air cooler and storing cold energy in the ice storage tank when solar energy is available. In addition, the ice storage tank supplies cooling during the night or when irradiance is insufficient,โ they explained.
In PM ice storage, the air cooler and ice storage tank are connected in parallel. โIn this form, the system stores cold energy in the ice storage tank before supplying cooling when solar energy is available, thereby allowing the ice storage tank to continuously supply cooling,โ they added.
The research was conducted on a refrigerated warehouse with a volume of 24.472 m3 that could operate either by PV or grid power. It consisted of 5.4 kW of solar panels and an inverter, which operated the vapor compression refrigeration (VPR) system. โThe VCR sub-system mainly consisted of an AC compressor with a frequency converter, a condenser, a throttle valve, an air cooler and an ice storage tank, all connected in sequence and utilizing R22 as the refrigerant,โ the scientists further explained.
The research group also noted that the system was built to allow it to switch between SM and PM modes. To operate in the first mode, a valve between the throttle valve and the air cooler was opened while a valve between the throttle and the ice storage tank, as well as a valve between the pump and the ice storage tank, was closed. For the second mode, the opposite connection was used.
The system operated under different conditions: the system was either powered by the grid or by the PV; the system ran under no-load and full load;ย and the operation technique was either SM or PM.
โResults indicate that maintaining the storage temperature of the system at 5 C prevented a decrease in grape quality, resulting in a 5.186 % decrease in water content and a 3.61 % decrease in sugar content,โ they concluded. โThe reduction in mass inferred that if the grapes were kept at room temperature their overall mass loss would have been considerably high. The fresh-keeping method prevented the mass reduction of the green grape owing to minimized water evaporation.โ
The system was presented in โResearch on the characteristics of photovoltaic-driven refrigerated warehouse system under different ice storage modes,โ which was published in Results in Engineering. The group comprised scientists from the Yunnan Normal Universityand the Yunnan Key Laboratory of Refrigeration.
Author: Lior Kahana
This article was originally published inย pv magazineย and is republished with permission.