There Is No Such Thing as Clean Coal

  • Most (90%) of South Africa’s electricity comes from coal (Eskom), as well as a quarter of the country’s liquid fuel in a coal-to-liquid process (Sasol).
  • Eskom is responsible for 45% and Sasol nearly 12% of the country’s greenhouse gas emissions.
  • There are three main technologies relied on by “clean coal” proponents, all three generate harmful environmental impacts of their own.

“Clean coal” is promoted as the lifeline that will allow governments to continue to depend on coal for energy generation. But there is no such thing as “clean coal”.  South Africa ranks among the dirtiest energy producers in the world. As a country, we rank 16th on the global emission list.

South Africa is also the biggest coal producer in Africa. Over the past 10 years alone, we have produced an average of 254 million tons of coal per year. 70 million tons of the coal we produce is exported, and the rest is used locally.

Eskom burns about two-thirds of coal used in South Africa in its coal-fired power stations annually, while Sasol Synfuels uses about one-fifth. The rest is used in a variety of industries, including steel and cement manufacturing. The direct impacts of using coal on health, water, land, and the climate are devastating.

Proponents with vested interests in the survival of the coal industry are promoting the idea of “clean coal” technology as the lifeline that will allow governments to continue to depend on coal as an energy generation option, while supposedly limiting its risks and impacts.

There is no such thing as “clean coal”. An overview of the coal value chain (mining, production, supply, and disposal) proves that “clean coal” is impossible. There are no solutions to neutralise all – or even most – of the dire environmental, health, and climate change impacts caused by coal. This is especially so in the context of the significantly cleaner and cheaper alternative energy sources – such as wind and solar power – that are available in such abundance in our country.

About 50% of the South Africa’s coal mines are opencast (at surface), while the rest are underground. The processes associated with either method of mining are inherently dirty with serious environmental and health implications. These include:

  • loss of arable land;
  • acid mine drainage, which pollutes surface and underground water;
  • dust emissions, with dangerous particles inhaled by surrounding communities; and
  • the production of 250 million tons per year of coal requires between 42.5 million m3 (enough to fill up 17 000 Olympic-sized swimming pools) and 147 million m3 (enough to fill up to 58 800 Olympic-sized swimming pools) of water.

There are no methods that can avoid all or even most of the detrimental impacts of the mining and processing of coal, and no such methods will be available for the foreseeable future.

Air pollution: In 2017, Eskom’s coal-fired power stations also emitted the following types and quantities of atmospheric pollutants:

Pollutant 2016/17 emissions Specific emissions (tons pollutant/GWh)
CO2 211.1 million tons 1051
SO2 1.766 million tons 8.79
NOx 0.885 million tons 4.26
PM10 65 130 tons 0.32
N2O 2782 tons 0.0138


Fine Particulate Matter (PM2.5) pollution from Eskom’s coal-fired power stations alone is responsible for the equivalent deaths of more than 2,200 South Africans every year, and causes thousands of cases of bronchitis and asthma in adults and children annually.

If “clean coal” could be applied to the production of electricity using coal-fired power stations, it should mean the avoidance of all the impacts associated with the combustion of coal, or at least a very substantial reduction of the consumption of resources and impacts of the combustion process. This is not the case.

The following three technologies (not all proven in SA) are generally relied on by “clean coal” proponents, but even combined, these will not provide the substantial reduction that is urgently needed. Instead, these technologies would generate harmful environmental impacts of their own.

  1. Supercritical and ultra-supercritical (USC) boiler technology

High Efficiency, Low Emissions (HELE) plants are put forward as the answer to greenhouse gas (GHG) emissions and pollution caused by coal-fired power plants. These are ultra-supercritical plants equipped with state-of-the-art pollution controls.[1]

CO2 emissions still remain high (at best reduced by about 20%); and pollutant (PM, SO2, and NOx) emissions also remain significant. HELE plants also require a significant increase in capital and operating costs, in a situation where coal power is already more expensive than available wind and solar power technologies.

  1. Circulating Fluidised Bed (CFB) combustion systems

CFB systems can use lower-quality coal, including discard coal, using direct injection of lime into the furnace to control SO2 emissions. Consequently, the amount of solid waste generated is significantly higher compared to pulverised fuel boilers (used by most of Eskom’s stations). For example, figures from the proposed Thabametsi Independent Power Producer (IPP) station show that for every 1000 tons of coal burnt, this CFB plant discharges 660 tons of ash and spent sorbent as waste. In addition, GHG emissions are significantly higher due to high Nitrous Oxide (N2O) emissions: 1.23 kg CO2eq per kWh.

With 60 million tons accumulating every year, CFB technology cannot solve the discard coal problem. The use of discard coal in this way will also result in air pollution; the increase in the amount of water used to wash the discard coal; and an increase in the amount of ash and sorbent to be dumped because of the higher ash content. This coal ash contains toxic chemicals such as arsenic, lead, mercury, and chromium, which can cause, among other things, cancer, organ failure and brain damage.

  1. CO2 disposal using Carbon Capture and Storage (CCS)

CCS technology is considered to be a candidate to capture, inject, and permanently store CO2 emissions (only) underground. There are several unresolved problems with CCS, including uncertainty around long-term leakage, its high capital costs, and the long lead-time – possibly decades – before the technology can be proven at the required scale.

Although the South African Centre for Carbon Capture and Storage (SACCS) is attempting to demonstrate that CCS can actually be implemented using South African geology, it remains unproven. The bulk of Eskom’s fleet of coal-fired power stations (12 of 15) are situated in the Mpumalanga Highveld, with two in Limpopo Province, and one in the Vaal Triangle, a far distance from the two identified possible storage sites to be tested.[2] This increase in transport costs would likely make large-scale CCS in South Africa unviable.

GBA News Desk. Source: Centre for Environmental Rights

Leave A Reply

About Author

Green Building Africa promotes the need for net carbon zero buildings and cities in Africa. We are fiercely independent and encourage outlying thinkers to contribute to the #netcarbonzero movement. Climate change is upon us and now is the time to react in a more diverse and broader approach to sustainability in the built environment. We challenge architects, property developers, urban planners, renewable energy professionals and green building specialists. We also challenge the funding houses and regulators and the role they play in facilitating investment into green projects. Lastly, we explore and investigate new technology and real-time data to speed up the journey in realising a net carbon zero environment for our children.

Copyright Green Building Africa 2024.